Wednesday, November 9, 2022

Optical flow

Hi Guys,

when I was visiting the inverse problems research group at the University of Helsinki I learned about the method called optical flow. We used this method in out paper on dynamic X-ray data.

Recently, I've been studying how the optical flow method could be applied to my current research on CO2 emission estimation.

Of course I had to try the optical flow method also on myself


Note that this method is not based on machine learning.

Cheers,

Janne

Saturday, July 9, 2022

Uusi menetelmä ihmisten aiheuttamien hiilidioksidipäästöjen seurantaan avaruudesta

Uusi menetelmä ihmisten aiheuttamien hiilidioksidipäästöjen seurantaan avaruudesta

 

Vuonna 2015 solmitun Pariisin ilmastosopimuksen myötä ihmisten aiheuttamien kasvihuonekaasupäästöjen monitorointi on noussut entistä tärkeämmäksi. Tämän johdosta Euroopan komission maanseurantaohjelma Copernicus on valmistelemassa uutta CO2M-missiota, jonka tarkoituksena on erityisesti keskittyä ihmisten aiheuttamien hiilioksidipäästöjen seurantaan. Satelliittikonstellaation on tarkoitus koostua kahdesta tai useammasta satelliitista, jotka havainnoivat hiilidioksidia (CO2) ja typpidioksidia (NO2) 250 km laajuisella kaistalla 4 km2 spatiaalisella resoluutiolla. Ensimmäinen satelliitti on tarkoitus laukaista vuonna 2025.


Simuloituja CO2M-satelliitin XCO2-havaointoja. Kuva: Gerrit Kuhlmann, Empa.


Julkaistussa tutkimuksessa kehitettiin uusi divergenssimenetelmä, jonka avulla voidaan laskea hiilidioksidin ja typen oksidien (NOx) päästöt kaupungeista ja voimaloista. Menetelmää sovellettiin mallisimulaatioista saatuihin synteettisiin CO2M-havaintoihin (esitetty kuvassa). Koska CO2-havaintojen tausta ja kohina ovat suuria verrattuna havaittuihin päästölisäyksiin, julkaisussa sovellettiin myös erilaisia kohinansuodatusmenetelmiä. Divergenssimenetelmä saadut päästöestimaatit ovat linjassa odotettujen arvojen kanssa. Julkaisussa keskusteltiin myös hiilidioksidipäästöjen laskemisesta NOx-päästöistä käyttäen hyväksi suoraan satelliittihavainnoista laskettua NOx:CO2-suhdetta. Yleisesti tutkimuksessa havaittiin, että divergenssimenetelmä antaa hyvän vaihtoehtoisen tavan laskea CO2-päästöt verrattuna esimerkiksi inversiomallinnusmenetelmiin ja menetelmiin, jotka laskevat päästöt yksittäisistä satelliittikuvista.

 

Tutkimus on tehty yhteistyössä Ilmatieteen laitoksen ja Sveitsiläisen Empa-instituutin kanssa. Sen rahoittamiseen ovat osallistuneet EU:n H2020-projekti CoCO2 ja Euroopan avaruusjärjestö ESA:n rahoittama projekti DACES, sekä Suomen Akatemia (CitySpot, ACCC, Inversiomallinnuksen ja kuvantamisen huippuyksikkö).




Viite: Janne Hakkarainen, Iolanda Ialongo, Erik Koene, Monika E. Szeląg, Johanna Tamminen, Gerrit Kuhlmann, Dominik Brunner: Analyzing Local Carbon Dioxide and Nitrogen Oxide Emissions From Space Using the Divergence Method: An Application to the Synthetic SMARTCARB Dataset, Frontiers in Remote Sensing, vol 3, 2022, doi:10.3389/frsen.2022.878731, Linkki


Friday, June 10, 2022

Anthropogenic Emission Monitoring with the Copernicus CO2 Monitoring Mission

Hi guys,

I am pleased to say that our manuscript was accepted today for the CO2M special issue “Anthropogenic Emission Monitoring with the Copernicus CO2 Monitoring Mission” in Frontiers in Remote Sensing.



Our paper is called “Analyzing local carbon dioxide and nitrogen oxide emissions from space using the divergence method: An application to the synthetic SMARTCARB dataset” and it is joint work between Finnish Meteorological Institute and Empa, Switzerland. The abstract is already online: https://www.frontiersin.org/articles/10.3389/frsen.2022.878731/abstract

I will write more about the paper when it is officially published!

Stay tuned!

Janne

Wednesday, February 2, 2022

Hi guys,

yesterday I was thinking what would happened if one would start Conway's Game of Life from the Ulam Spiral...


-Janne